Bài giảng Hình học Lớp 8 - Tiết 19: Ôn tập giữa kì I
Bạn đang xem tài liệu "Bài giảng Hình học Lớp 8 - Tiết 19: Ôn tập giữa kì I", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
bai_giang_hinh_hoc_lop_8_tiet_19_on_tap_giua_ki_i.pptx
Nội dung text: Bài giảng Hình học Lớp 8 - Tiết 19: Ôn tập giữa kì I
- HÌNH HỌC 8 TIẾT 19. ÔN TẬP GIỮA KÌ I
- I,Lí thuyết :- Các hình Tứ giác + Các cạnh đối song song + Các cạnh đối bằng nhau Hai cạnh đối song song + 2 cạnh đối song song và bằng nhau + Các góc đối bằng nhau + 2 đường chéo cắt nhau tại Hình trung điểm của mỗi đường thang Hình 1 góc vuông Hình thang cân bình hành Hình thang vuông 2 cạnh bên Có một đường Có một chéo là phân giác phânlà chéo góc một của song song đườngcó hai chéo vuông gócvuôngchéo 3 góc vuông Hình Hình thoi 4 cạnh bằng chữ nhật nhau
- -Đường trung bình của tam giác ( sgk/76,77) -Đường trung bình của hình thang (sgk/78) -Đối xứng trục (sgk/84) -Đối xứng tâm (sgk/93) II/ Bài tập: 1/ Bài 1: Hãy chọn đáp án đúng : Câu 1: Tứ giác ABCD có Â = 1000 , B = 700 , C = 800 thì số đo góc D là : A. 1000 B.B 1100 C. 1200 D. 1300 Câu 2: Cho hình thang ABCD (AB//CD) AB =7cm , CD = 11cm . Gọi I là trung điểm của AD , K là trung điểm của BC . Độ dài đoạn thẳng IK là : A.A 9cm . B.10cm C. 11cm D. 12cm
- Câu 3: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm . gọi M là trung điểm của BC . độ dài đoạn thẳng AM là : A. 9cm . B.7cm C. 6 cm DD. 5cm Câu 4: Cho h. thoi ABCD có độ dài hai đường chéo là 10cm và 6cm. Độ dài cạnh hình thoi đó là: A.6cm . B. 35 cm C.C 34 cm D. 33 cm . Câu 5:Trong các loại tứ giác sau:hình bình hành, hình chữ nhật, hình thang cân. Hình có tâm đối xứng là: A. Hình bình hành B. Hình thang cân C .Hình chữ nhật. D.D Cả A và C Câu 6:Trong các hình sau đây, hình nào là hình có trục đối xứng? AA. Hình thoi. B. Hình thang C . Hình bình hành D.Cả 3 câu A,B và C
- Bài 2: Cho hình bình hành ABCD có AB = AC, lấy M là trung điểm của BC, lấy điểm E đối xứng với điểm A qua M . Chứng minh rằng: a) ABEC là hình thoi. b) Ba điểm D,C,E thẳng hàng. c) E là điểm đối xứng với D qua C. Giải ABCD là hình bình hành GT AB = AC; MB = MC; AM =ME KL a) ABEC là hình thoi. b) D,C,E thẳng hàng c) D đối xứng với E qua C a)Chứng minh: tứ giác ABEC là hình thoi Xét tứ giác ABEC, Ta có: AM=ME(gt) =>ABEC là hình bình hành (1) BM=MC(gt) Mà AB=AC(gt) (2) Từ (1),(2) suy ra ABEC là hình thoi.
- b) D,C,E thẳng hàng : Ta có: AB//CD( vì ABCD là hình bình hành) =>D,C, E thẳng hàng AB//CE (vì ABEC là hình thoi.) (theo tiên đề Ơclit) c) D đối xứng với E qua C AB=CD( ABCD là hình bình hành) => CD=CE AB=CE ( ABEC là hình thoi.) C là trung điểm của Mà D,C,E thẳng hàng(cmt) đoạn thẳng DE Vậy D đối xứng với E qua C
- HƯỚNG DẪN TỰ HỌC Bài vừa học: -Ôn tập các kiến thức đã học trong chương I -Xem lại các bài tập đã làm -Làm bài tập 3 sau đây Bài sắp tới :Kiểm tra giữa kì I
- Bài 3:Cho tam giác ABC cân tại A, trung tuyến AM, N là trung điểm của AB a/ Chứng minh tứ giác MNAC là hình thang b/ Kẻ NE ⊥ AM tại E. Chứng minh A và M đối xứng với nhau qua NE c/Kẻ NK⊥BC tại K . Chứng minh tứ giác MENK là hình chữ nhật HD TH ABC cân tại A Trung tuyến AM GT NA=NB, NE⊥AM , E AM NK⊥BC ,K BC KL a) Tứ giác MNAC là hình thang b) A và M đối xứng với nhau qua NE c) Tứ giác MENK là hình chữ nhật