Các dạng bài tập Đại số Lớp 8 - Chủ đề 9: Bài tập rút gọn phân thức

Bài 15. Cho phân thức: M  
a) Tìm các giá trị của a, b, c để phân thức có nghĩa.
b) Rút gọn biểu thức M.
docx 4 trang Hoàng Cúc 03/03/2023 3800
Bạn đang xem tài liệu "Các dạng bài tập Đại số Lớp 8 - Chủ đề 9: Bài tập rút gọn phân thức", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxcac_dang_bai_tap_dai_so_lop_8_chu_de_9_bai_tap_rut_gon_phan.docx

Nội dung text: Các dạng bài tập Đại số Lớp 8 - Chủ đề 9: Bài tập rút gọn phân thức

  1. CHỦ ĐỀ 9: BÀI TẬP RÚT GỌN PHÂN THỨC. Bài 1. Rút gọn các phân thức sau: x2 16 x2 4x 3 15x(x y)3 a) (x 0, x 4) b) (x 3) c) (y (x y) 0) 4x x2 2x 6 5y(x y)2 5(x y) 3(y x) 2x 2y 5x 5y x2 xy d) (x y) e) (x y) f) (x y,y 0) 10(x y) 2x 2y 5x 5y 3xy 3y2 2ax2 4ax 2a 4x2 4xy g) (b 0, x 1) h) (x 0, x y) 5b 5bx2 5x3 5x2y (x y)2 z2 x6 2x3y3 y6 i) (x y z 0) k) (x 0, x y) x y z x7 xy6 Bài 2. Rút gọn các biểu thức. 4 2 3 2 a) m m ; b) ab a a b ; 2m2 2m 2 a3b b4 c) xy 1 x y ; d) ax ay bx by ; y z 1 yz ax ay bx by 2 2 2 2 2 e) a b c 2ab ; f) a b ; a2 b2 c2 2ac a2 a b b2 3 a3 (b2 c2 ) b3 (c2 a2 ) c3 (a2 b2 ) g) a 1 ; h) ; 2a2 4a 2 a2 (b c) b2 (c a) c2 (a b) x2 (a b)x ab 2 2 2 2 i) ; j) x a b 2bc 2ax c ; x2 (a b)x ab x2 b2 a2 2bx 2ac c2 3 2 x x 2 k) 3x 2x 4x 5 ; l) . 6x2 3x 9 x2 5x 6 2x 2x 2 n) a b ; m) 1 (2a 3b) ; a x bx 2a 3b 1 3x 3y 4m 4n o) 3 3 ; ơ) 2 2 ; 3x 3y 22n 22m 2 2 2 3 2 p) a (b c) b (c a) c (a b) ; q) 2x 7x 12x 45 ; ab2 ac2 b3 bc2 3x3 19x2 33x 9 x3 y3 z3 3xyz x3 y3 z3 3xyz u) ; ư) . (x y)2 (y z)2 (z x)2 (x y)2 (y z)2 (z x)2
  2. Bài 3: Rút gọn, rồi tính giá trị các phân thức sau: (2x2 2x)(x 2)2 1 x3 x2y xy2 a) A với x b) B với x 5,y 10 (x3 4x)(x 1) 2 x3 y3 Bài 4: Rút gọn các phân thức sau: a b 2 c2 2 2 2 a) ( ) b) a b c 2ab a b c a2 b2 c2 2ac 3 2 c) 2x 7x 12x 45 3x3 19x2 33x 9 Bài 5: Rút gọn các phân thức sau: 3 3 3 3 3 3 a) a b c 3abc b) x y z 3xyz a2 b2 c2 ab bc ca (x y)2 (y z)2 (z x)2 3 3 3 2 2 2 c) x y z 3xyz d) a (b c) b (c a) c (a b) (x y)2 (y z)2 (z x)2 a4(b2 c2) b4(c2 a2) c4(a2 b2) 2 2 2 24 20 16 4 e) a (b c) b (c a) c (a b) f) x x x x 1 ab2 ac2 b3 bc2 x26 x24 x22 x2 1 Bài 6: Chứng minh các đẳng thức sau: x 2 23 x3 3x 3x(x y) a) (x 0) b) (x y) x x(x2 2x 4) x y y2 x2 x y 3a(x y)2 c) (a 0, x y) 3a 9a2(x y) Bài 7: Tìm giá trị của biến x để: 1 1 a) P đạt giá trị lớn nhất ĐS: max P khi x 1 x2 2x 6 5 x2 x 1 3 b) Q đạt giá trị nhỏ nhất ĐS: minQ khi x 1 x2 2x 1 4 Bài 8: Chứng minh rằng phân thức sau đây không phụ thuộc vào x và y: (x2 a)(1 a) a2x2 1 3xy 3x 2y 2 9x2 1 1 a) b) x ,y 1 (x2 a)(1 a) a2x2 1 y 1 3x 1 3 ax2 a axy ax ay a (x a)2 x2 c) (x 1,y 1) d) x 1 y 1 2x a
  3. 2 2 e) x y f) 2ax 2x 3y 3ay (x y)(ay ax) 4ax 6x 9y 6ay Bài 9. Tìm các giá trị của x để các phân thức sau bằng 0. 4 3 4 2 a) x x x 1 ; b) x 5x 4 . x4 x3 2x2 x 1 x4 10x2 9 Bài 10. Viết gọn biểu thức sau dưới dạng một phân thức. A = (x2 - x + 1)(x4 - x2 + 1)(x8 - x4 + 1)(x16 - x8 + 1)(x32 - x16 + 1). HD: Nhân biểu thức A với x2 + x + 1, từ đó xuất hiện những biểu thức liên hợp nhau x2 y2 z2 Bài 11. Rút gọn biết rằng x + y + z = 0. (y z)2 (z x)2 (x y)2 Bài 12. Tính giá trị của phân thức A = 3x 2y , biết rằng 9x2 + 4y2 = 20xy, và 2y < 3x <0. 3x 2y HD 9x2 4y2 12xy 20xy 12xy 8xy 1 Ta có A2 = 9x2 4y2 12xy 20xy 12xy 32xy 4 1 Do 2y < 3x < 0 3x 2y 0,3x 2y 0 A 0 . vậy A = . 2 (14 4)(54 4)(94 4) (214 4) Bài 13. Rút gọn biểu thức: P = . (34 4)(74 4)(114 4) (234 4) HD Xét n4 + 4 = (n2 + 2)2 - 4n2 = (n2 +2n + 2)(n2 - 2n + 2) = [n(n - 2) + 2][n(n + 2) + 2] ( 1.1 2)(1.3 2) (3.5 2)(5.7 2) (19.21 2)(21.23 2) 1.1 2 1 Do đó P =    (1.3 2)(3.5 2) (5.7 2)(7.9 2) (21.23 2)(23.25 2) 23.25 2 577 Bài 14. Cho phân số A = 1 (mẫu có 99 chữ số 0). Tính giá trị của A với 200 chữ số thập 1,00 01 phân. HD 100 Ta có A = 10 . Nhân tử và mẫu với 10100 - 1, ta được: 10100 1
  4. 100 100 10100 (10100 1) 99 900 0 A= 200 0,9 9 90 0 0 10 1 9 9 9 100 100 200 (Theo quy tắc đổi số thập phân tuần hoàn đơn ra phân số). (a2 b2 c2 )(a b c)2 (ab bc ca)2 Bài 15. Cho phân thức: M = (a b c)2 (ab bc ca) a) Tìm các giá trị của a, b, c để phân thức có nghĩa. b) Rút gọn biểu thức M. HD: a) Điều kiện để phân thức M có nghĩa là mẫu thức kác 0. Xét (a + b + c)2 - (ab + bc + ca) = 0 a2 + b2 + c2 + ab + bc + ca = 0. 2a2 + 2b2 + 2c2 +2ab + 2bc + 2ca = 0 (a + b)2 + (b + c)2 + (c + a)2 = 0 a + b = b + c = c + a a = b = c. Vậy điều kiện để phân thức M có nghĩa là a, b, c không đồng thời bằng 0, tức là a2 + b2 + c2 0. b) Do (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca Đặt a2 + b2 + c2 = x; ab + bc + ca = y. Khi đó (a + b + c)2 = x + 2y. x(x 2y) y2 x2 2xy y2 (x y)2 Ta có M = x y a2 b2 c2 ab bc ca x 2y y x y x y (Điều kiện là a2 + b2 + c2 0)