Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 8 - Chuyên đề 4: Tìm min, max của biểu thức

1. Định nghĩa
Cho biểu thức A(x;y;z)  Khi đó hảng số M là giá trị lớn nhất (GTLN) của  A(x;y;z)  nếu thỏa mãn hai điều kiện sau:
 Với mọi  x;y;z  mà A(x;y;z)   xác định mà  A(x;y;z) < M
 Tồn tại một bộ số  A(x;y;z)  sao cho  A(x;y;z) = M

 

 

doc 69 trang Hoàng Cúc 03/03/2023 5300
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 8 - Chuyên đề 4: Tìm min, max của biểu thức", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docchuyen_de_boi_duong_hoc_sinh_gioi_toan_lop_8_chuyen_de_4_tim.doc

Nội dung text: Chuyên đề bồi dưỡng học sinh giỏi Toán Lớp 8 - Chuyên đề 4: Tìm min, max của biểu thức

  1. CHUYÊN ĐỀ TÌM MIN, MAX CỦA BIỂU THỨC I.LÝ THUYẾT 1. Định nghĩa Cho biểu thức A x; y;z Khi đó hảng số M là giá trị lớn nhất (GTLN) của A x; y;z nếu thỏa mãn hai điều kiện sau: Với mọi x; y;z mà A x; y;z xác định mà A x; y;z M Tồn tại một bộ số x; y;z sao cho A x; y;z M Cho biểu thức A x; y;z Khi đó hảng số N là giá trị lớn nhất (GTNN) của A x; y;z nếu thỏa mãn hai điều kiện sau: Với mọi x; y;z mà A x; y;z xác định mà A x; y;z N Tồn tại một bộ số x; y;z sao cho A x; y;z N II.LUYỆN TẬP Dạng 1: ĐA THỨC BẬC 2 ĐƠN GIẢN Phương pháp giải:Áp dụng hằng đẳng thức số 1 và số 2 Bài 1: Tìm GTNN của: A(x) x2 4x 24 HD: A(x) x2 4x 24 (x 2)2 20 20x min A(x) 20 x 2 Bài 2: Tìm GTNN của: B(x) 2x2 8x 1 HD: B(x) 2x2 8x 1 2(x2 4x 4) 7 2(x 2)2 7 7 minB 7 x 2 Bài 3: Tìm GTNN của: C(x) 3x2 x 1 HD: 1 13 13 1 C(x) 3x2 x 1 3(x )2 x 6 12 12 6 Bài 4: Tìm GTNN của: A(x) 5x2 4x 1 HD: 4 1 2 9 9 2 A(x) 5x2 4x 1 5(x2 x ) 5(x )2 x 5 5 5 5 5 5 Bài 5: Tìm GTNN của: B(x) 3x2 x 1 HD: 1 13 13 1 B(x) 3x2 x 1 3(x )2 x 6 12 12 6 Chúc các em chăm ngoan – học giỏi !! Trang 1
  2. Bài 6: Tìm GTNN của : A 9x2 6x 4 3x 1 6 HD: Đặt: 3x 1 t t 2 9x2 6x 1 E t 2 4t 5 Bài 7: Tìm GTLN của: A 2x 1 2 3x 2 2 x 11 HD: 2 2 2 2 17 569 569 A 4x 4x 1 9x 12x 4 x 11 5x 17x 14 5 x 10 20 20 Bài 8: Tìm min của: A x 3 2 x 1 2 HD: 2 A x2 6x 9 x2 2x 1 2x2 8x 10 2 x 2 2 2 Bài 9: Tìm min của: B 2 x 1 2 3 x 2 2 4 x 3 2 HD: 2 B 2 x 2 2x 1 3 x 2 4x 4 4 x 2 6x 9 x 2 8x 22 x 4 38 38 Bài 10: Tìm Min của: P 5x2 6x 1 1 HD: 1 TH1: x P 5x2 6x 6 1 TH2: x P 5x2 6x 2 6 Dạng 2: ĐA THỨC BẬC 4 ĐƠN GIẢN Phương pháp giải: Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. 2 2 Sử dụng các hằng đẳng thức a b , a b c . Dạng 2.1: ax4 + bx3 + cx2 + d Bài 1: Tìm GTNN của: C x4 4x3 9x2 20x 22 HD: C x4 4x3 4x2 5 x2 4x 4 2 Bài 2: Tìm min của: I x4 6x3 11x2 12x 20 HD: I x4 6x3 11x2 12x 20 x2 x2 6x 9 2x2 12x 20 2 2 2 I x 2 x 3 2 x 2 6x 9 2 x 2 x 3 2 x 3 2 2 Bài 3: Tìm GTNN của: A(x) x4 6x3 10x2 6x 9 HD: A(x) x4 6x3 10x2 6x 9 (x4 6x3 9x2 ) (x2 6x 9) (x2 3x)2 (x 3)2 0x Chúc các em chăm ngoan – học giỏi !! Trang 2
  3. x2 3x 0 min A(x) 0 x 3 x 3 0 Bài 4: Tìm GTNN của: B(x) x4 10x3 26x2 10x 30 HD: 2 4 3 2 2 2 2 x 5x 0 B(x) x 10x 26x 10x 30 (x 5x) (x 5) 5 5 x 5 x 5 0 Bài 5: Tìm GTNN của: C(x) x4 2x3 3x2 4x 2017 HD: C(x) x2 (x2 2) 2x(x2 2) (x2 2) 2015 (x2 2)(x 1)2 2015 2015 x 1 Bài6: Tìm GTNN của: D(x) x4 x2 2x 7 HD: D(x) x4 2x2 1 x2 2x 1 5 (x2 1)2 (x 1)2 5 5 x 1 Bài 7: Tìm GTNN của biểu thức: A a4 2a3 4a 5 HD: A a2 a2 2 2a a2 2 a2 2 3 = a2 2 a2 2a 1 3 3 dấu bằng khi a=1 Dạng 2.2: (x+a)4 +( x+b)4 + Bài 1: Tìm GTNN của: D x 8 4 x 6 4 HD: Đặt: x 7 y D y 1 4 y 1 4 2y4 12y2 2 2 Bài 2: Tìm min của: A x 2 4 x 2 4 HD: 2 2 A x2 2x 4 x2 2x 4 x4 4x2 16 2 2x3 8x 4x2 x4 4x2 16 2 2 4x2 2x3 8x 2x4 24x2 32 2 x2 6 40 40 Bài 3: Tìm max của: F 2 3 x 1 4 3 x 5 4 HD: 4 4 Đặt x 2 t F 2 3 t 3 3 t 3 2 2 F 3 t 2 6t 9 3 t 2 6t 9 2 6t 4 324t 2 484 6 t 4 54t 2 484 2 F 6 t 2 27 3890 3890 Bài 4: Tìm min của: G x 3 4 x 7 4 HD: 4 4 2 2 Đặt x 2 t G t 5 t 5 t 2 10t 25 t 2 10t 25 Chúc các em chăm ngoan – học giỏi !! Trang 3
  4. 2 G 2t 4 300t 2 1250 2 t 4 2.75t 2 5625 104 2 t 2 75 104 104 Dạng 2.3: x(x+a)( x+b)(x +c)(x+d)(x+e) + Bài 1: Tìm GTNN của: A x x 3 x 4 x 7 HD: A x x 7 x 3 x 4 x2 7x x2 7x 12 , Đặt x2 7x 6 t Khi đó: A t 6 t 6 t2 36 36 2 2 x 1 Dấu “ = ” khi t 0 x 7x 6 0 x 6 Vậy Min A= - 36 khi x=1 hoặc x=6 Bài 2: Tìm GTNN của: B x 1 x 3 x2 4x 5 HD: B x2 4x 5 x2 4x 5 , Đặt x2 4x 4 0 . Khi đó: B t 1 t 1 t2 1 1 , Dấu “ = “ khi t 2 0 x2 4x 4 0 t 2 Bài 3: Tìm min của: A x x 2 x 4 x 6 8 HD: A x x 6 x 2 x 4 8 x2 6x x2 6x 8 8 , Đặt x2 6x 4 t . Khi đó: A t 4 t 4 8 t 2 16 8 t 2 8 8 , Dấu “ = “ Khi đó: x 3 5 t 2 0 x2 6x 4 0 x 3 5 Bài 4: Tìm GTNN của: B x 1 x 2 x 3 x 4 HD: B x 1 x 4 x 2 x 3 x2 5x 4 x2 5x 6 , Đặt x2 5x 5 t , Khi đó: 5 5 B t 1 t 1 t2 1 1 , Dấu “ = “ khi t 2 0 x2 5x 5 0 x 2 Bài 5: Tìm GTNN của: A x2 x 6 x2 x 2 HD: Đặt x2 x 2 t . Khi đó: A t 4 t 4 t2 16 16 2 x 1 Dấu “ = “ xảy ra khi: t 0 x x 2 0 x 2 Bài 6: Tìm GTNN của : C x 1 x 2 x 3 x 6 HD: C x 1 x 6 x 2 x 3 x2 5x 6 x2 5x 6 , Đặt x2 5x t . Khi đó: 2 2 x 0 C t 6 t 6 t 36 36 , Dấu “ = “ khi t 0 x 5x 0 x 5 Bài 7: Tìm GTNN của: D 2x 1 x 2 x 3 2x 1 Chúc các em chăm ngoan – học giỏi !! Trang 4
  5. CHUYÊN ĐỀ TÌM MIN, MAX CỦA BIỂU THỨC I.LÝ THUYẾT 1. Định nghĩa Cho biểu thức A x; y;z Khi đó hảng số M là giá trị lớn nhất (GTLN) của A x; y;z nếu thỏa mãn hai điều kiện sau: Với mọi x; y;z mà A x; y;z xác định mà A x; y;z M Tồn tại một bộ số x; y;z sao cho A x; y;z M Cho biểu thức A x; y;z Khi đó hảng số N là giá trị lớn nhất (GTNN) của A x; y;z nếu thỏa mãn hai điều kiện sau: Với mọi x; y;z mà A x; y;z xác định mà A x; y;z N Tồn tại một bộ số x; y;z sao cho A x; y;z N II.LUYỆN TẬP Dạng 1: ĐA THỨC BẬC 2 ĐƠN GIẢN Phương pháp giải:Áp dụng hằng đẳng thức số 1 và số 2 Bài 1: Tìm GTNN của: A(x) x2 4x 24 HD: A(x) x2 4x 24 (x 2)2 20 20x min A(x) 20 x 2 Bài 2: Tìm GTNN của: B(x) 2x2 8x 1 HD: B(x) 2x2 8x 1 2(x2 4x 4) 7 2(x 2)2 7 7 minB 7 x 2 Bài 3: Tìm GTNN của: C(x) 3x2 x 1 HD: 1 13 13 1 C(x) 3x2 x 1 3(x )2 x 6 12 12 6 Bài 4: Tìm GTNN của: A(x) 5x2 4x 1 HD: 4 1 2 9 9 2 A(x) 5x2 4x 1 5(x2 x ) 5(x )2 x 5 5 5 5 5 5 Bài 5: Tìm GTNN của: B(x) 3x2 x 1 HD: 1 13 13 1 B(x) 3x2 x 1 3(x )2 x 6 12 12 6 Chúc các em chăm ngoan – học giỏi !! Trang 1