Đề thi chọn học sinh giỏi cấp huyện môn Toán Lớp 8 - Năm học 2017-2018 - Phòng GD&ĐT Thọ Xuân (Có đáp án)
Câu 4. (6,0 điểm)
Cho tam giác vuông cân tại A. Trên cạnh lấy điểm M bất kỳ, sao cho M khác A và C. Trên cạnh AB lấy điểm E sao cho AE = CM
a) Gọi O là trung điểm của cạnh BC. Chứng minh ∆QEM vuông cân
Cho tam giác vuông cân tại A. Trên cạnh lấy điểm M bất kỳ, sao cho M khác A và C. Trên cạnh AB lấy điểm E sao cho AE = CM
a) Gọi O là trung điểm của cạnh BC. Chứng minh ∆QEM vuông cân
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp huyện môn Toán Lớp 8 - Năm học 2017-2018 - Phòng GD&ĐT Thọ Xuân (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_cap_huyen_mon_toan_lop_8_nam_hoc_2.docx
Nội dung text: Đề thi chọn học sinh giỏi cấp huyện môn Toán Lớp 8 - Năm học 2017-2018 - Phòng GD&ĐT Thọ Xuân (Có đáp án)
- PHÒNG GD&ĐT KỲ THI CHỌN HSG CÁP HUYỆN HUYỆN THỌ XUÂN NĂM HỌC : 2017 – 2018 Môn: Toán – Lớp 8 ĐỀ CHÍNH THỨC Ngày thi: 08 tháng 4 năm 2018 Câu 1. (5,0 điểm) x3 y3 x2 4y2 2 3 Cho biểu thức : P 2 2 : 2 2 x xy y x 2y y x x y a) Rút gọn biểu thức P b) Tính giá trị biểu thức P khi x, y thỏa mãn ; x y 6; x2 y2 26\ c) Nếu x; y là các số thực dương làm cho P xác định và thỏa mãn: x y 2. Hãy tìm giá trị lớn nhất của biểu thức P Câu 2. (4,0 điểm) a) Lúc 7 giờ sáng một xe buýt đi từ vị trí A đến vị trí B với độ dài là 60 km. Khi đi tới vị trí C cách vị trí A 39km thì xe bị hỏng. Xe phải dừng lại và sửa chữa mất 15phút, sau đó xe tiếp tục đi từ C đến B với vận tốc giảm hơn so 11 với vận tốc đi từ A tới C là 3km / h.Tổng thời gian xe đi từ A đến B hết 6 giờ (tính cả thời gian dừng lại sửa xe). Hỏi xe buýt bị hỏng lúc mấy giờ ? b) Giải phương trình x2 2x 2 x2 8x 20 x2 4x 6 x2 6x 12 x 1 x 4 x 2 x 3 Câu 3. (3,0 điểm) a) Tìm tất cả các số nguyên n sao cho: 4n3 n 3chia hết cho 2n2 n 1 b) Tìm các cặp số nguyên x; y sao cho: 3x2 y2 2xy 2x 2y 40 0 Câu 4. (6,0 điểm) Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy điểm M bất kỳ, sao cho M khác Avà C.Trên cạnh AB lấy điểm E sao cho AE CM a) Gọi O là trung điểm của cạnh BC.Chứng minh OEM vuông cân b) Đường thẳng qua Avà song song với ME,cắt tia BM tại N. Chứng minh : CN AC c) Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí điểm M trên cạnh AC. Câu 5. (2,0 điểm) Cho a,b,clà ba số thực dương. Chứng minh rằng: 3 a b c a2 b2 c2 2 b c c a a b b2 c2 c2 a2 a2 b2
- ĐÁP ÁN Câu 1. 1a) 2 x3 y3 x2 2y 2x 3y P : 2 2 2 2 x xy y x 2y x y 2 2 x y x xy y x 2y x 2y 2x 3y : x2 xy y2 x 2y x2 y2 x2 y2 x y x 2y . 2x 3y x2 y2 2x 3y . x2 y2 2x 3y 1b) 3 Điều kiện : x 0; y 0; x y; x 2y 2 Ta có: 2 x y x2 2 x y y2 62 26 2 x y x y 5 Vậy P 52 25 1c) 3 Với x, y dương và thỏa mãn điều kiện x 0; y 0; x ; x 2y ta có: 2 2 x y xy 1(vì x y 2).Dấu " "xảy ra x y 1 2 Vậy GTLN của P bằng 1 x y 1 Câu 2. a) Gọi vận tốc của xe buýt khi đi từ Ađến C là x km / h; x 3 thì vận tốc của xe buýt khi đi từ C đến B là x 3 km / h 39 Thời gian để xe buýt đi hết quãng đường AC là (h), thời gian để xe buýt đi hết x 21 1 quãng đường CB là h . Thời gian dừng lại sửa xe là 15 phút (h) x 3 4 39 21 1 11 Theo bài ta có phương trình: x x 3 4 6
- x 39(tm) Giải ra được 36 x (ktm) 19 Vậy khi đi từ Atới C xe buýt đi với vận tốc 39km / h , suy ra thời gian để xe buýt đo đi hết quãng đường AC là : 39:39 1(giờ) Do đó đúng 8 giờ sáng thì xe buýt bị hỏng. b) Giải phương trình x2 2x 2 x2 8x 20 x2 4x 6 x2 6x 12 x 1; 2; 3; 4 x 1 x 4 x 2 x 3 x 1 2 1 x 4 2 4 x 2 2 2 x 3 2 3 x 1 x 4 x 2 x 3 1 4 2 3 x 1 x 4 x 2 x 3 x 1 x 4 x 2 x 3 1 4 2 3 x 1 x 4 x 2 x 3 x 4 4x 4 2x 6 3x 6 x2 5x 4 x2 5x 6 5x 8 x2 5x 6 5x 12 x2 5x 4 5x3 33x2 70x 48 5x3 37x2 80x 48 4x2 10x 0 x 0(tm) 5 x (tm) 2 Câu 3. 3a) 4n3 n 3 4 Ta có: 2n 1 2n2 n 1 2n2 n 1 Vì n là số nguyên nên 2n 1là số nguyên. Do đó để 4n3 n 3chia hết cho 2n2 n 1thì 2n2 n 1phải là ước số của 4 2 2 2 1 1 1 7 Mặt khác: 2n n 1 2 n n 2 n 0 2 2 4 16
- Do đó: 2n2 n 1 1hoặc 2n2 n 1 2hoặc 2n2 n 1 4 n 0 Giải từng trường hợp suy ra: n 1 n 1 3b) Ta có: 3x2 y2 2xy 2x 2y 40 0 4x2 x2 y2 2xy 2x 2y 1 41 x y 1 2 2x 2 41 3x y 1 y x 1 41 Đặt : 3x y 1 a và y x 1 b.Suy ra a và blà các ước của 41, có tích bằng 41.Nhận thấy 41là số nguyên tố, từ đó ta có các trường hợp như bảng sau: a 41 1 1 41 b 1 41 41 1 a b 10 10 10 10 x 4 a 3b 4 12 32 30 10 y 4 Vậy các cặp số nguyên x; y cần tìm là 10; 12 ; 10; 32 ; 10;30 ; 10;10
- Câu 4 H A N E M C O B 4a. Vì tam giác ABC vuông cân tại A và O là trung điểm của cạnh BC nên AO là đường trung tuyến ứng với cạnh huyền BC. Suy ra OA OC OB và O· AB ·ACO 450 Xét OEAvà OMC có: OA OC;O· AB ·ACO 450; AE CM gt OEA OMC c.g.c OE OM & E· OA M· OC (1) Vì AO là đường trung tuyến của tam giác cân ABC nên AO cũng là đường cao AO BC ·AOM M· OC ·AOC 900 (2) Từ (1) và (2) suy ra : ·AOM ·AOE E· OM 900 Vì OE OM & E· OM 900 nên OEM vuông cân tại O 4b. BM BE Vì ME / / AN nên theo định lý Ta – let ta có: (3) MN EA Vì tam giác ABC cân tại A nên AB AC, mà AE CM nên BE AM Do đó, ở (3) ta thay BE bởi AM , thay EA bởi MC ta được: BM AM (4) AB / /CN (Theo định lý Ta let đảo) MN MC Mà AB AC CN AC 4c. Từ ME / / AN O· ME O· HA(cặp góc đồng vị)
- Mà O· ME 450 (vì OEM vuông cân tại O) suy ra O· HA 450 ·ACB Hay M· HA ·ACB.Kết hợp với O· MC ·AHM (đối đỉnh) (1) OM MC , kết hợp O· MA C· MH (hai góc đối đỉnh) AM MH OMA : CMH (c.g.c) O· AM M· HC (2) Từ (1) và (2) suy ra ·AHC M· HA M· HC 900 , suy ra CH AN Xét tam giác AHC và tam giác CAN sẽ đồng dạng theo trường hợp góc góc AH AC AH.AN AC.HC không đổi HC AN Câu 5 a b c 3 Chứng minh (1) b c c a a b 2 Ta có: a b c a b c 1 1 1 3 b c c a a b b c c a a b a b c b c a c a b 1 1 1 3 a b c 3 b c c a a b b c c a a b Đặt : x b c; y c a; z a b. Suy ra x, y, z 0và ta có: a b c 1 1 1 1 x y z 3 b c c a a b 2 x y z 1 x y x z y z 9 2 2 2 3 2 y x z x z y 2 2 2 1 x y x z y z 1 3 9 3 .9 3 2 xy xz yz 2 2 x y 2 x z 2 y z 2 (Vì 0 ) xy xz yz a b c 3 Vậy . Dấu " "xảy ra a b c b c c a a b 2 a2 b2 c2 a b c Chứng minh : (2) b2 c2 c2 a2 a2 b2 b c c a a b
- Thật vậy, do vai trò của a,b,cnhư nhau nên không mất tính tổng quát , ta có thể giả sử : a b c Xét hiệu : a2 b2 c2 a b c 2 2 2 2 2 2 b c c a a b b c c a a b a2 a b2 b c2 c 2 2 2 2 2 2 b c b c c a c a a b a b a2b ab2 a2c ac2 b2a ba2 b2c bc2 c2a ca2 c2b cb2 b2 c2 b c c2 a2 c a a2 b2 a b ab a b ac a c ab a b bc b c ac a c bc b c b2 c2 b c c2 a2 c a a2 b2 a b 1 1 ab a b 2 2 2 2 b c b c c a c a 1 1 bc b c 2 2 2 2 c a c a a b a b Vì giá trị của các biểu thức trong ngoặc đều không âm a b c a2 b2 c2 Vậy b c c a a b b2 c2 c2 a2 a2 b2 Từ (1) và (2) suy ra đpcm . Dấu " "xảy ra khi a b c