Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2013-2014 - Sở GD&ĐT Thanh Hóa (Có đáp án và thang điểm)

Câu IV (6,0 điểm) : Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. 

       1. Chứng minh tam giác EMF là tam giác cân.

       2. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng.

        3. Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.

doc 7 trang Hoàng Cúc 01/03/2023 2900
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2013-2014 - Sở GD&ĐT Thanh Hóa (Có đáp án và thang điểm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_cap_tinh_mon_toan_lop_9_nam_hoc_20.doc

Nội dung text: Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2013-2014 - Sở GD&ĐT Thanh Hóa (Có đáp án và thang điểm)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THANH HOÁ Năm học 2013 - 2014 ĐỀ THI CHÍNH THỨC Môn thi: TOÁN - Lớp 9 THCS Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 21/03/2014 Số báo danh (Đề thi có 01 trang, gồm 05 câu) Câu I (4,0 điểm): Cho biểu thức xy x xy x A x 1 1 : 1 x 1 . xy 1 1 xy xy 1 xy 1 1. Rút gọn biểu thức A. 2. Cho 1 1 6 . Tìm giá trị lớn nhất của A. x y Câu II (5,0 điểm). 1.Cho phương trình x 2 2 m 2 x m2 2m 4 0 . Tìm m để phương trình 2 1 1 có hai nghiệm thực phân biệt x1 , x2 thỏa mãn 2 2 . x1 x2 x1x2 15m x y z 1 2. Giải hệ phương trình 4 4 4 . x y z xyz Câu III (4,0 điểm). 1. Tìm tất cả các cặp số nguyên dương (a; b) sao cho (a + b 2) chia hết cho (a2b – 1). 2. Tìm x, y, z N thỏa mãn x 2 3 y z . Câu IV (6,0 điểm) : Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. 1. Chứng minh tam giác EMF là tam giác cân. 2. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. 3. Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD. Câu V (1,0 điểm) : Cho x, y là các số thực dương thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức B 1 1 . x3 y3 xy HẾT
  2. LỜI GIẢI Ở TRANG 3
  3. Câu Ý Lời giải (vắn tắt) Điểm I 1 Điều kiện: xy 1. 0,25 (4,0đ) (2,5đ) x 1 1 xy xy x xy 1 xy 1 1 xy A : xy 1 1 xy xy 1 1 xy xy x xy 1 x 1 1 xy xy 1 1 xy 0,50 x 1 1 xy xy x xy 1 xy 1 1 xy xy 1 1 xy xy x xy 1 x 1 1 xy 0,50 1 x 1 . x y xy xy 1,25 2 Theo Côsi, ta có: 6 1 1 2 1 1 9 . (1,5đ) x y xy xy 0,50 1 Dấu bằng xảy ra 1 1 x = y = . x y 9 0,50 1 Vậy: maxA = 9, đạt được khi : x = y = . 9 0,50 II 1 PT đã cho có hai nghiệm phân biệt có điều kiện: (5,0đ) (2,5đ) ' 0 m 2 2 m2 2m 4 0 m 0 (*) 0,50 x x 4 2m Với m 0 theo Vi-et ta có: 1 2 . 2 0,25 x1.x2 m 2m 4 2 1 1 2 1 1 Ta có x 2 x 2 x x 15m 2 x x 15m (1) 1 2 1 2 x1 x2 2x1x2 1 2 0,50 1 1 1 2 2 0,50 m 6m 4 m 2m 4 15m 1 1 1 4 . Đặt m t do m 0 t 0 4 4 15 m m 6 m 2 m m 0,50 1 1 1 t 4 Ta cos (1) trở thành t 4 ( do t 0 ) t 6 t 2 15 t 12 0,50 4 Với t 4 ta có m 4 m 2 thỏa mãn (*) m 0,25 2 Ta có: (2,5đ) x4 y4 y4 z4 z4 x4 0,50 x4 y4 z4 x2 y2 y2 z2 z2 x2 = 2 2 2
  4. x2 y2 y2 z2 y2 z2 z2 x2 z2 x2 x2 y2 0,50 = xyyz yzzx zxxy = 2 2 2 = xyz (x + y + z) = xyz ( vì x + y + z = 1). 0,50 x y z 1 Dấu bằng xảy ra x y z x y z 1 3 1 1 1 0,50 Vậy nghiệm của hệ phương trình là: x ; y ; z 3 3 3 III 1 Giả sử (a + b2) (a2b – 1), tức là: a + b2 = k(a2b – 1), với (4,0đ) (2,0đ)  * k  a + k = b(ka2 – b) a + k = mb (1) 2 2 Ở đó m  mà: m = ka – b m + b = ka (2) 0,50 Từ (1) và (2) suy ra: (m – 1)(b – 1) = mb – b – m + 1 (m – 1)(b – 1) = (a + 1)(k + 1 – ka) (3) Do m > 0 (điều này suy ra từ (1) do a, k, b > 0) nên m 1 (vì m ). Do b > 0 nên b – 1 0 (do b ) (m – 1)(b – 1) 0. Vì thế từ (3) suy ra: (a + 1)(k + 1 – ka) 0. 0,50 Lại do a > 0 nên suy ra: k + 1 – ka 0 k + 1 ka 1 k(a – 1) (4) Vì a – 1 0 (do a , a > 0) và k , k > 0 nên từ (4) a 1 k(a 1) 0 có: a 2 k(a 1) 1 k 1 0,25 - Với a = 1. Thay vào (3) ta được: (m – 1)(b – 1) = 2 m 1 2 b 1 1 b 2 m 1 1 b 3 b 1 2 Vậy, trường hợp này ta có: a = 1, b = 2 hoặc a = 1, b = 3. 0,25 - Với a = 2 (vì k = 1). Thay vào (3) ta có: (m – 1)(b – 1) = b 1 0 . m 1 Khi b = 1, ta được: a = 2, b = 1. Khi m = 1: Từ (1) suy ra a + k = b b = 3. Lúc này được: a = 2, b = 3. 0,25 Tóm lại, có 4 cặp số (a; b) thỏa mãn bài toán là: (1; 2), (1; 3), (2; 3), (2; 1). 0,25
  5. 2 Ta có x 2 3 y z x 2 3 y z 2 yz (2,0đ) x y z 2 3 2 yz x y z 2 4 3 x y z 12 4yz 0,50 (1) 4yz x y z 2 12 TH1. Nếu x y z 0 Ta có 3 (2) 4 x y z 0,50 vô lý ( do x, y, z N nên vế phải của (2) là số hữu tỷ ). x y z 0 TH2. x y z 0 khi đó 1 (3) 0.50 yz 3 x 4 x 4 Giải (3) ra ta được y 1 hoặc y 3 thử lại thỏa mãn 0,50 z 3 z 1 IV (6,0đ) 1 E (2.5đ) D M I H F 0,50 0,50 A C O B Ta có M thuộc đường tròn tâm O đường kính AB (giả 0,50 0,50 thiết) nên A· MB 900 (góc nội tiếp chắn nửa đường tròn) hay F· MB 900 . Mặt khác F· CB 900 (giả thiết).Do đó F· MB F· CB 1800 . Suy ra BCFM là tứ giác nội tiếp C· BM E· FM 1 (vì 0,50 cùng bù với C· FM ). Mặt khác C· BM E· MF 2 (góc nội tiếp; góc tạo bởi tiếp tuyến và dây cung cùng chắn A¼M ). Từ (1) và (2) E· FM E· MF . Suy ra tam giác EMF là tam giác cân tại E. (Có thể nhận ra ngay E· MF M· BA M· FE nên suy ra EMF cân) 0,50 D· IF Gọị H là trung điểm của DF. Suy ra IH  DF và D· IH 3 . 2 0,50 Trong đường tròn I ta có: D· MF và D· IF lần lượt là góc nội 1 0,50 tiếp và góc ở tâm cùng chắn cung DF. Suy ra D· MF D· IF(4). 2 0,50
  6. Từ (3) và (4) suy ra D· MF D· IH hay D· MA D· IH . 0,50 Trong đường tròn O ta có: D· MA D· BA (góc nội tiếp cùng chắn D»A ) 2 Suy ra D· BA D· IH . (2.5đ) Vì IH và BC cùng vuông góc với EC nên suy ra IH // BC. Do đó D· BA H· IB 180o D· IH H· IB 180o Ba điểm D, I, B thẳng hàng. 1 Vì ba điểm D, I, B thẳng hàng A· BI A· BD sđ A»D. 2 0,50 1 Mà C cố định nên D cố định sđ A»D không đổi. 2 Do đó góc ABI có số đo không đổi khi M thay đổi trên 0,50 cung BD. 3(1đ) 1 2xy Ta có: B 1 1 1 1 . (x y)3 3xy(x y) xy 1 3xy xy xy(1 3xy) 0.25 (x y)2 Theo Côsi: xy 1 . 4 4 Gọi Bo là một giá trị của B, khi đó, tồn tại x, y để: 1 2xy B o xy(1 3xy) 2 3Bo(xy) – (2 + Bo)xy + 1 = 0 (1) 0.25 2 Để tồn tại x, y thì (1) phải có nghiệm xy = B o – 8Bo B 4 2 3 + 4 0 o Bo 4 2 3 Để ý rằng với giả thiết bài toán thì B > 0. Do đó ta có: V(1đ) Bo 4 2 3 . Với 0.25 2 Bo 3 3 3 3 Bo 4 2 3 xy x(1 x) 6Bo 6 2 3 6 2 3 2 3 2 3 1 1 1 1 x2 x 3 3 0 x 3 , x 3 . 6 2 3 2 2 Vậy, Bmin 4 2 3 , đạt được khi 2 3 2 3 1 1 1 1 3 3 x , y hoặc 0.25 2 2
  7. 2 3 2 3 1 1 1 1 x 3 , y 3 . 2 2